

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pychangelog 1.0 (v1.0.0.0-x-dev) documentation

 [image: [version r1-v1.0.0.0]] [https://bitbucket.org/bmearns/pychangelog/commits/tag/r1-v1.0.0.0] [image: [GPLv3+]] [https://www.gnu.org/licenses/gpl.html] [image: [downloads on pypi]] [https://pypi.python.org/pypi/pychangelog] [image: [latest version on pypi]] [https://pypi.python.org/pypi/pychangelog]

pychangelog Documentation

pychangelog is a python package.

Documentation Contents:

	README
	tl;dr

	Misc.

	pychangelog module

	tests module
	Nosetests

	version module
	Versioning

	Module Contents

	LICENSE (GPLv3)

Indices and tables

	Index

	Module Index

	Search Page

Version

[image: [version r1-v1.0.0.0]] [https://bitbucket.org/bmearns/pychangelog/commits/tag/r1-v1.0.0.0]

This documentation is for pychangelog 1.0 (v1.0.0.0-x-dev).

Project Resources

	pychangelog project homepage (bitbucket) [https://bitbucket.org/bmearns/pychangelog]

	pychangelog on pypi [https://pypi.python.org/pypi/pychangelog]

	
	Online documentation:

	
	Read The Docs (.org) [http://pychangelog.readthedocs.org/]

	Python Hosted (.org) [http://pythonhosted.org/pychangelog/]

 Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pychangelog 1.0 (v1.0.0.0-x-dev) documentation

README

pychangelog is a python package which provides some simple utilities for parsing
and testing change logs, based on a simple standard format which is not really
documented anywhere. But you can look at the changelog for this project to get an
idea (in CHANGES.txt in the root of the source distribution).

Page Contents

	tl;dr
	What?

	Install?

	Examples?

	Dependencies?

	Docs?

	Misc.
	Contact Information

	Copyright and License

tl;dr

What?

Parses changelogs.

Install?

$ pip install pychangelog

Or, from source:

$ python setup.py install

Examples?

Example changelog (in ‘CHANGES.txt’):

Pre Rel 4
 [M] Remove the doo_little function.
 [n] Add optional argument to frobnicate.
 [p] More bug fixes.

Rel 3 - v1.1.0.0 - 2013-05-20
 [p] Bug fix in doo_little()
 [n] Added the frobnicate function in order to frob objects
 more easily.
 [s] Fixed up docs on doo_little.
 [p] Bug fix in some private functions

Rel 2 - v1.0.0.1 - 2013-05-18
 [s] Documentation improvements.

Rel 1 - v1.0.0.0 - 2013-05-15
 * Initial public release.
 * Provides the doo_little() function, and little else.

>>> import pychangelog
>>> with open('CHANGES.txt', 'r') as f:
... changelog = pychangelog.parse_plain_text(f)
...
>>> changelog
<pychangelog.ChangeLog object at 0x01F71A30>
>>> len(changelog)
4
>>> for release in changelog:
... print repr(release)
...
<ReleaseInfo r1-1.0.0.0 (05/15/13)>
<ReleaseInfo r2-1.0.0.1 (05/18/13)>
<ReleaseInfo r3-1.1.0.0 (05/20/13)>
<ReleaseInfo r4*>
>>> r3 = changelog[2]
>>> r3
<ReleaseInfo r3-1.1.0.0 (05/20/13)>
>>> r3.release_num
3
>>> r3.version
(1, 1, 0, 0)
>>> r3.year
2013
>>> r3.date
datetime.date(2013, 5, 20)
>>> len(r3)
4
>>> for change in r3:
... print change
...
[p] Bug fix in doo_little()
[n] Added the frobnicate function in order to frob objectsmore easily.
[s] Fixed up docs on doo_little.
[p] Bug fix in some private functions
>>> p = r3.patch
>>> len(p)
2
>>> for patch_change in p:
... print patch_change
...
[p] Bug fix in doo_little()
[p] Bug fix in some private functions
>>> r3.append('[p] Another change I forgot to mention.')
>>> len(p)
3
>>> len(r3)
5
>>> for patch_change in p:
... print patch_change
...
[p] Bug fix in doo_little()
[p] Bug fix in some private functions
[p] Another change I forgot to mention.
>>>

Dependencies?

pychangelog is developed against python [https://www.python.org/] version 2.7.

pychangelog also requires the docit [https://pypi.python.org/pypi/docit]
package for its internals. If you install with pip, this will be handled
automatically.

Some of the utilities in pychangelog.tests are optionally enhanced by the nose [https://nose.readthedocs.org/]
python package, but this is not strictly required. You can install nose with:

$ pip install nose

To build the sphinx docs from source (as is), you’ll need the sphinx_rtd_theme [https://github.com/snide/sphinx_rtd_theme]:

$ pip install sphinx_rtd_theme

Docs?

	Read The Docs (.org) [http://pychangelog.readthedocs.org/]

	Python Hosted (.org) [http://pythonhosted.org/pychangelog/]

Misc.

Contact Information

This project is currently hosted on bitbucket [https://bitbucket.org],
at https://bitbucket.org/bmearns/pychangelog [https://bitbucket.org/bmearns/pychangelog/].
The primary author is Brian Mearns, whom you can contact through bitbucket at
https://bitbucket.org/bmearns.

Copyright and License

pychangelog is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

pychangelog is distributed in the hope that it will be useful,
but without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. See the
GNU General Public License for more details.

A copy of the GNU General Public License is available in the
pychangelogdistribution under the file LICENSE.txt. If you did not
receive a copy of this file, see
http://www.gnu.org/licenses/.

 Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pychangelog 1.0 (v1.0.0.0-x-dev) documentation

pychangelog module

The toplevel module for the pychangelog package.

	
class pychangelog.ChangeLog(*releases)[source]

	Bases: _abcoll.Sequence

A ChangeLog object is simply a sequence of ReleaseInfo objects, in order form oldest to newest.
There are rules used to validate the change log, for instance that each release must be numerically
next after the previous, version numbers must increase correctly, full-releases cannot follow pre-releases,
and dates must increase correctly.

Pass in the ReleaseInfo objects from oldest to newest.

	
__init__(*releases)[source]

	Pass in the ReleaseInfo objects from oldest to newest.

	
last_release()[source]

	Returns the index in the sequence of the last full release (i.e.,
not a pre_release).

Returns None if no full releases are mentioned in the change log.

See also

get_last_release to get the actul corresponding ReleaseInfo object.

	
get_last_release()[source]

	Returns the ReleaseIngo object for the last full release in the log
(i.e., not a pre_release).

Returns None if no full releases are mentioned in the change log.

See also

last_release to get just the index of the last release.

	
__len__()[source]

	Returns the number of releases in the change log.

	
__getitem__(idx)[source]

	Get the ReleaseInfo object at the specified index, where 0 is the oldest.

	
append(release)[source]

	Add a new ReleaseInfo object to the end (top) of the change log. This should be
a release after the most recent.

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'pychangelog'

	

	
class pychangelog.ReleaseInfo(release_num, version_numbers, year, month, day, pre_release=False, *change_lines)[source]

	Bases: _abcoll.Sequence

Encapsulates information about a single release, usually a member of a ChangeLog.

A ReleaseInfo object acts as a Sequence [http://docs.python.org/2/library/collections.html#collections.Sequence] over the change-lines it
mentions in the change log (i.e., the entries that describe the changes in the release
from the previous.

Each such line must have a type: usually one of TYPE_MAJOR, TYPE_MINOR, TYPE_PATCH,
or TYPE_SEMANTIC, specfiying the scope of the impact on the public interface. However,
for the first release (release #1), each line should instead be simple a TYPE_STAR
line, since there is no public interface prior to the first release.

In addition to iterating over all the lines in the release, you can get a View
ojbect which acts as a Sequence over just a particular type of line. One such View is created
during initialization for each of the five types of lines, and you can get a handle to these
View objects using the major, minor, patch, semantic, and starred properties.

	
TYPE_STAR = 0

	

	
TYPE_MAJOR = 1

	

	
TYPE_MINOR = 2

	

	
TYPE_PATCH = 3

	

	
TYPE_SEMANTIC = 4

	

	
__init__(release_num, version_numbers, year, month, day, pre_release=False, *change_lines)[source]

	

	
__str__()[source]

	

	
__repr__()[source]

	

	
class View(obj, length, getitem)[source]

	Bases: _abcoll.Sequence

	
__init__(obj, length, getitem)[source]

	

	
__len__()[source]

	

	
__getitem__(idx)[source]

	

	
__abstractmethods__ = frozenset([])

	

	
__module__ = 'pychangelog'

	

	
ReleaseInfo.major[source]

	

	
ReleaseInfo.minor[source]

	

	
ReleaseInfo.patch[source]

	

	
ReleaseInfo.semantic[source]

	

	
ReleaseInfo.starred[source]

	

	
ReleaseInfo.major_count()[source]

	

	
ReleaseInfo.get_major(idx)[source]

	

	
ReleaseInfo.minor_count()[source]

	

	
ReleaseInfo.get_minor(idx)[source]

	

	
ReleaseInfo.patch_count()[source]

	

	
ReleaseInfo.get_patch(idx)[source]

	

	
ReleaseInfo.semantic_count()[source]

	

	
ReleaseInfo.get_semantic(idx)[source]

	

	
ReleaseInfo.starred_count()[source]

	

	
ReleaseInfo.get_starred(idx)[source]

	

	
ReleaseInfo.pre_release[source]

	

	
ReleaseInfo.version[source]

	

	
ReleaseInfo.year[source]

	

	
ReleaseInfo.month[source]

	

	
ReleaseInfo.day[source]

	

	
ReleaseInfo.date[source]

	

	
ReleaseInfo.release_num[source]

	

	
ReleaseInfo.__len__()[source]

	

	
ReleaseInfo.__getitem__(idx)[source]

	

	
ReleaseInfo.iter()[source]

	

	
ReleaseInfo.append(line)[source]

	

	
ReleaseInfo.__abstractmethods__ = frozenset([])

	

	
ReleaseInfo.__module__ = 'pychangelog'

	

	
classmethod ReleaseInfo.parse_line(line)[source]

	

	
pychangelog.parse_plain_text(istream)[source]

	Parses a change log in plain-text format, with newst release at the beginning,
and returns a ChangeLog object.

 Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pychangelog 1.0 (v1.0.0.0-x-dev) documentation

tests module

The pychangelog.tests module provides some helper functions and classes for
testing your changelog, as well as standard version modules.

A standard version module is simply a module which you distribute as part of your
package (usually called package_name.version) which includes as public members
a certain set of standard attributes providing information about the version number
of the package. Specifically, it provides the following attributes, which you
can read more about in this package’s version module:

	RELEASE

	MAJOR

	MINOR

	PATCH

	SEMANTIC

	SUFFIX

	YEAR

	MONTH

	DAY

Nosetests

Some of the code in this module is intended to work with the nose [https://nose.readthedocs.org/] test utility
for python. While none of it strictly depends on nose to function, the node
python package will be imported and used to provide some additional convenience
if it is available.

	
pychangelog.tests.verify_version_module(changelog, version)[source]

	Generically tests the contents of a standard version module against the contents of
the given ChangeLog object, without any pre-existing assumptions about
whether or not this is for a release or a development version.

The latest full release (i.e., not a pre-release) in the changelog should correspond to
the version and date information in the version module. If there is not full release in
the change log, then the version module should list major version 0 and release 0.

Additionally, if the change-log has no pre-release, then we should not be in development
mode, meaning version.SUFFIX should be None. Otherwise, it should not be None.

	
pychangelog.tests.verify_for_release(changelog, version)[source]

	Tests a version module and change log for a release version. This calls verify_version_module to do
the generic tests validating the version module against the changelog, and also tests that the version
module and changelog are both correct for a release version.

	
pychangelog.tests.verify_for_development(changelog, version)[source]

	Tests a version module and change log for a release version. This calls verify_version_module to do
the generic tests validating the version module against the changelog, and also tests that the version
module and changelog are both correct for a release version.

	
class pychangelog.tests.StandardVersionTests(methodName='runTest')[source]

	Bases: unittest.case.TestCase

This is a simple TestCase [http://docs.python.org/2/library/unittest.html#unittest.TestCase] class that can be easily extended
for unittesting to validate your changelog and version module. All you need to
do is subclass this class and set the version_mod attribute to the module
which contains your project’s standard version attributes.

Alternatively, you can use the create factory method to create automatically
create a new subclass with the specified version module.

See also

	
	get_path_to_changelog can be overridden to change the path from which

	the changelog will be read.

	
	get_changelog can be overridden to change the way in which the changelog

	is actually loaded and parsed.

	
	get_version_module can be overridden to change the way the version module

	is fetched, instead of just getting it form the version_mod attribute.

Create an instance of the class that will use the named test
method when executed. Raises a ValueError if the instance does
not have a method with the specified name.

	
classmethod create(version_mod)[source]

	Create and return a new subclass of cls which sets the version_mod
attribute to the given version module. This is an alternative to statically
subclassing if for some reason that’s easier for you.

	
version_mod = None

	The version_mod attribute should be set on a subclass of StandardVersionTests
to the module which implememnts your package’s standard version attributes.

See also

get_version_module

	
get_path_to_changelog()[source]

	Returns the filesystem path from which the changelog will be read by
get_changelog.

	
get_changelog()[source]

	Called from setUp to get a ChangeLog object to test with.
The default implementation opens the path indicates by get_path_to_changelog
and parses it using parse_plain_text.

	
get_version_module()[source]

	Should returns a module which implements your projects standard version
attributes. The default implementation returns the value of the version_mod
attribute, which subclasses can easily set statically in the class definition.

If this attribute value is None, will raise a NotImplementedError.
This is what will happen if you actually try to run an instance of this
class directly, instead of subclassing it to override the value of the
version_mod attribute.

	
setUp()[source]

	Test setup sets a change_log attribute on the instance to the value returned
by get_changelog.

	
test_changelog()[source]

	Just does the setUp to make sure that the changelog can be parsed and
constructed.

	
test_version_module()[source]

	Invokes verify_version_module.

	
test_for_release()[source]

	Invokes verify_for_release.

If nose [https://nose.readthedocs.org/] is installed, this is tagged
with the attribute release using the attrib [http://nose.readthedocs.org/en/latest/plugins/attrib.html#module-nose.plugins.attrib]
plugin. To omit this test, you can invoke nosetests using the
--attr parameter, for instance in BASH as:

$ nosetest --attr '!release'

or in DOS as:

> nosetests --attr !release

	
test_for_dev()[source]

	Invokes verify_for_development.

If nose [https://nose.readthedocs.org/] is installed, this is tagged
with the attribute dev using the attrib [http://nose.readthedocs.org/en/latest/plugins/attrib.html#module-nose.plugins.attrib]
plugin. To omit this test, you can invoke nosetests using the
--attr parameter, for instance in BASH as:

$ nosetest --attr '!dev'

or in DOS as:

> nosetests --attr !dev

 Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pychangelog 1.0 (v1.0.0.0-x-dev) documentation

version module

The version module provides version numbering for the entire package.

Page Contents

	Versioning
	Version Number
	Major Version

	Minor Version

	Patch Version

	Semantic Version

	Compatibility Summary

	Version Suffix

	Development code

	Specifying a version number

	Interface Version

	Release Number

	Module Contents

Versioning

This packages uses a five part version number, plus an incremental release number.
Either the version number or the release number can be used to identify
a released version of the code.

Version Number

The version number is a four part dotted number, with an optional suffix on the end.
Formally, a version number looks like:

version number ::= <Major>.<minor>[.<patch>[.<semantic>]][-[x-]<suffix>]

With each new released version of the code, exactly one of the four numbers will
increase, and any numbers to its right will reset to 0.

The easiest way to understand version numbers is from the perspective of someone who has
written client code: i.e., code that makes use of a particular version of the
library. From this perspective, the version number indicates whether or
not your client code can be expected to work with different versions of this package.

Major Version

The <Major> component is the major version number, and it describes backward
compatibility. Going to a newer version of the package, your code should continue to work
as long as the major version doesn’t change.

The major version is changed only when something is removed from the public
interface. For instance, if a function is no longer supported, the major version number
would have to increase, because client code which relied on that function would no longer
work.

The major version number can be accessed through the MAJOR member of this module.

Minor Version

The <minor> component is the minor version number, and it describes forward
compatibility: Going to an older version of the package, your code will continue to work
as long as the minor version doesn’t change. (As before, your code will also work
for newer versions, as long as the major version number hasn’t changed).

The minor version number is changed only when something is added to the public
interface, for instance a new function is added. Such a change maintains backward
compatibility (as described above), but loses forward compatibility, because any client
code written again this new version may not work with an older version.

The minor version number can be accessed through the MINOR member of this module.

Patch Version

The <patch> component is the patch number, and it describes changes that
do not affect compatibility, either forwards or backwards. Your client code will
continue to work with an older or newer version of the package as long as the major and minor
version numbers are the same, regardless of the patch number.

Patch changes are code changes that do not effect the interface, for instance bug-fixes
or performance enhancements. (although some bugs effect the interface and may therefore
cause a higher version number to change).

The patch number can be accessed through the PATCH member of this module.

Semantic Version

The <semantic> component is the semantic version number, and it describes changes
that do not affect how the code runs at all. Ths generally means that documentation or
other auxilliary files included in the package have changed.

The semantic version number can be accessed through the SEMANTIC member of this module.

Compatibility Summary

The following table summarizes compatibility for a hypothetical client application
built against released version M.n.p.s:

	Component
	Compatibile (all)
	Incompatible (any)

	Major
	M
	!= M

	minor
	>= n
	< n

	patch
	any
	

	semantic
	any
	

Version Suffix

The <suffic> component is the version suffix, which is used only for non-released
code. The suffix has one of the following forms:

version suffix ::= << empty >>
 dev[-<rev>]
 blood-<branch>[-<rev>]

The first form is an empty suffix, and is reserved for released (tagged) code only.

The second form, "dev", is for non-released code in the trunk. This is the
main line of development. Dev code may not be completely functional, and may even
break the existing interface.

The third form, "blood-...", if for non-released code on a branch. The <branch>
component of this form should be the name of the branch. This is considered
bleeding-edge code and may be highly unstable.

The optional <rev> component on both the second and third forms can be used to
specify a specific revision for comitted development code. This must be an globally
unambiguous identifier for the revision, for instance the change set id.

Development code

A non-empty version suffix indicates a development version of the code. In this case,
the four version numbers remain unchanged until the code is released (in which case
it is no longer development code, and the suffix is changed to empty).

In other words, anytime you see a non-empty version suffix, the version numbers shown
refer to version from which the development code is derived. This is done because it
is not generally known until release what the next released version number will
be, since it is not known what types of changes will be included in it.

Specifying a version number

When specifying a version number, the major and minor version numbers should always
be included. Additionally, all non-zero version numbers should be included, and
any version number to the left of a non-zero version number should be included.

The suffix should always be included in the version number, with the indicated hyphen
separating the semantic version number and the suffix. The only exception is for
released code, in which case the suffix is empty and should be omitted, along with the
joining hyphen.

The optional "x-" shown preceding the suffix in the version number is for compatibility
with setup-tools so that versions compare correctly.

The above rules will unambiguously describe any released version of the package.

Interface Version

Because any change to the public interface requires a change to either the major or minor
version numbers, the interface can be specified by a shortened two part version:

interface version ::= <Major>.<minor>

Note that this only applies for released versions: development versions may modify the
public interface prior to changing the version numbers.

Release Number

The release number is a simple integer which increments by one for every public release
of the code. It does not convey any information about compatibility with other versions,
but it does provide a simple alternative to identifying released versions.

The release number should be written with a leading "r" or "rel". For
instance, the first release was "r1".

For release code, the release number may be used in place of the suffix in the version
number. This is optional because the version number and the release number are
synonymous. However, including them both in the version string is a useful way to
provide both pieces of information.

This alternative form of the version number is:

alt. version number ::= <Major>.<minor>[.<patch>[.<semantic>]]-r<release>

Module Contents

	
pychangelog.version.RELEASE = 1

	The current Release Number.

	
pychangelog.version.MAJOR = 1

	The current major version number.

	
pychangelog.version.MINOR = 0

	The current minor version number.

	
pychangelog.version.PATCH = 0

	The current patch version number.

	
pychangelog.version.SEMANTIC = 0

	The current semantic version number.

	
pychangelog.version.SUFFIX = 'dev'

	The current Version Suffix.

Suffix options are None [http://docs.python.org/2/library/constants.html#None], "dev", and "blood-"

	None [http://docs.python.org/2/library/constants.html#None] means this is a released/tagged version.

	"dev" means this is a development version from the trunk/mainline.

	"blood-" means it’s on a branch. After the dash, fill in the name of the branch.

Dev and blood versions are still numbered for the previous version,
because we may not know what the next version will be until we’re finished.

	
pychangelog.version.COPYRIGHT = 2014

	The copyright year for the code.

	
pychangelog.version.YEAR = 2014

	The year in which the code was released.

See also

	MONTH

	DAY

	datestr

	
pychangelog.version.MONTH = 5

	The month in which the code was released. This is 1 indexed, in [1, 12].

See also

	YEAR

	DAY

	datestr

	MONTH_NAMES

	
pychangelog.version.DAY = 18

	The day of the month on which the code was released.

See also

	YEAR

	MONTH

	datestr

	
pychangelog.version.MONTH_NAMES = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

	A sequence giving the names of months, for use by datestr. Standard values are three-letter
English-language abbreviations for the months of the Gregorian calendar.

	
pychangelog.version.setuptools_string()[source]

	Returns the version string used by setuptools. This takes one of two forms:

setuptools_string ::= <Major>.<minor>.<patch>.<semantic>-x-<suffix>
 <Major>.<minor>.<patch>.<semantic>-r<release>

The first form is used for development code (i.e., when SUFFIX is not None [http://docs.python.org/2/library/constants.html#None]),
and the second it used for released code.

This is similar to string, except for the additional x- for development
versions, which is used to ensure that setuptools sorts versions correctly.
(specifically, so that released versions are earler than development versions
which are derived from them).

	
pychangelog.version.tag_name()[source]

	Returns the tag name for the most recent release.

	
pychangelog.version.short_string()[source]

	Returns a string describing the Interface Version (i.e., <Major>.<minor>).

	
pychangelog.version.string()[source]

	Like setuptools_string, except leaves out the x- for development
versions.

	
pychangelog.version.datestr()[source]

	Returns a simple string giving the date of release. Format
of this string is unspecified, it intended to be human readable,
not machine parsed. For machine processing, use the individual
variables, as listed below.

See also

	YEAR

	MONTH

	DAY

	MONTH_NAMES

 Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pychangelog 1.0 (v1.0.0.0-x-dev) documentation

LICENSE (GPLv3)

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

 Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pychangelog 1.0 (v1.0.0.0-x-dev) documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pychangelog	

 	
 	
 pychangelog.tests	
 Helper functions for testing and validating changelogs and standard version modules.

 	
 	
 pychangelog.version	
 Version information for the pychangelog package.

 Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pychangelog 1.0 (v1.0.0.0-x-dev) documentation

Index

 _
 | A
 | C
 | D
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | V
 | Y

_

 	

 	__abstractmethods__ (pychangelog.ChangeLog attribute)

 	

 	(pychangelog.ReleaseInfo attribute)

 	(pychangelog.ReleaseInfo.View attribute)

 	__getitem__() (pychangelog.ChangeLog method)

 	

 	(pychangelog.ReleaseInfo method)

 	(pychangelog.ReleaseInfo.View method)

 	__init__() (pychangelog.ChangeLog method)

 	

 	(pychangelog.ReleaseInfo method)

 	(pychangelog.ReleaseInfo.View method)

 	__len__() (pychangelog.ChangeLog method)

 	

 	(pychangelog.ReleaseInfo method)

 	(pychangelog.ReleaseInfo.View method)

 	

 	__module__ (pychangelog.ChangeLog attribute)

 	

 	(pychangelog.ReleaseInfo attribute)

 	(pychangelog.ReleaseInfo.View attribute)

 	__repr__() (pychangelog.ReleaseInfo method)

 	__str__() (pychangelog.ReleaseInfo method)

A

 	

 	append() (pychangelog.ChangeLog method)

 	

 	(pychangelog.ReleaseInfo method)

C

 	

 	ChangeLog (class in pychangelog)

 	COPYRIGHT (in module pychangelog.version)

 	

 	create() (pychangelog.tests.StandardVersionTests class method)

D

 	

 	date (pychangelog.ReleaseInfo attribute)

 	datestr() (in module pychangelog.version)

 	

 	DAY (in module pychangelog.version)

 	day (pychangelog.ReleaseInfo attribute)

G

 	

 	get_changelog() (pychangelog.tests.StandardVersionTests method)

 	get_last_release() (pychangelog.ChangeLog method)

 	get_major() (pychangelog.ReleaseInfo method)

 	get_minor() (pychangelog.ReleaseInfo method)

 	get_patch() (pychangelog.ReleaseInfo method)

 	

 	get_path_to_changelog() (pychangelog.tests.StandardVersionTests method)

 	get_semantic() (pychangelog.ReleaseInfo method)

 	get_starred() (pychangelog.ReleaseInfo method)

 	get_version_module() (pychangelog.tests.StandardVersionTests method)

I

 	

 	iter() (pychangelog.ReleaseInfo method)

L

 	

 	last_release() (pychangelog.ChangeLog method)

M

 	

 	MAJOR (in module pychangelog.version)

 	major (pychangelog.ReleaseInfo attribute)

 	major_count() (pychangelog.ReleaseInfo method)

 	MINOR (in module pychangelog.version)

 	minor (pychangelog.ReleaseInfo attribute)

 	

 	minor_count() (pychangelog.ReleaseInfo method)

 	MONTH (in module pychangelog.version)

 	month (pychangelog.ReleaseInfo attribute)

 	MONTH_NAMES (in module pychangelog.version)

P

 	

 	parse_line() (pychangelog.ReleaseInfo class method)

 	parse_plain_text() (in module pychangelog)

 	PATCH (in module pychangelog.version)

 	patch (pychangelog.ReleaseInfo attribute)

 	patch_count() (pychangelog.ReleaseInfo method)

 	

 	pre_release (pychangelog.ReleaseInfo attribute)

 	pychangelog (module)

 	pychangelog.tests (module)

 	pychangelog.version (module)

R

 	

 	RELEASE (in module pychangelog.version)

 	release_num (pychangelog.ReleaseInfo attribute)

 	

 	ReleaseInfo (class in pychangelog)

 	ReleaseInfo.View (class in pychangelog)

S

 	

 	SEMANTIC (in module pychangelog.version)

 	semantic (pychangelog.ReleaseInfo attribute)

 	semantic_count() (pychangelog.ReleaseInfo method)

 	setUp() (pychangelog.tests.StandardVersionTests method)

 	setuptools_string() (in module pychangelog.version)

 	short_string() (in module pychangelog.version)

 	

 	StandardVersionTests (class in pychangelog.tests)

 	starred (pychangelog.ReleaseInfo attribute)

 	starred_count() (pychangelog.ReleaseInfo method)

 	string() (in module pychangelog.version)

 	SUFFIX (in module pychangelog.version)

T

 	

 	tag_name() (in module pychangelog.version)

 	test_changelog() (pychangelog.tests.StandardVersionTests method)

 	test_for_dev() (pychangelog.tests.StandardVersionTests method)

 	test_for_release() (pychangelog.tests.StandardVersionTests method)

 	test_version_module() (pychangelog.tests.StandardVersionTests method)

 	

 	TYPE_MAJOR (pychangelog.ReleaseInfo attribute)

 	TYPE_MINOR (pychangelog.ReleaseInfo attribute)

 	TYPE_PATCH (pychangelog.ReleaseInfo attribute)

 	TYPE_SEMANTIC (pychangelog.ReleaseInfo attribute)

 	TYPE_STAR (pychangelog.ReleaseInfo attribute)

V

 	

 	verify_for_development() (in module pychangelog.tests)

 	verify_for_release() (in module pychangelog.tests)

 	verify_version_module() (in module pychangelog.tests)

 	

 	version (pychangelog.ReleaseInfo attribute)

 	version_mod (pychangelog.tests.StandardVersionTests attribute)

Y

 	

 	YEAR (in module pychangelog.version)

 	

 	year (pychangelog.ReleaseInfo attribute)

 Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

 _modules/pychangelog/version.html

 Navigation

 		
 index

 		
 modules |

 		pychangelog 1.0 (v1.0.0.0-x-dev) documentation »

 		Module code »

 		pychangelog »

 Source code for pychangelog.version

"""
The ``version`` module provides version numbering for the entire package.

.. contents:: **Page Contents**
 :local:
 :depth: 3
 :backlinks: top

Versioning

This packages uses a five part version number, plus an incremental release number.
Either the version number or the release number can be used to identify
a released version of the code.

Version Number
~~~~~~~~~~~~~~~

The version number is a four part dotted number, with an optional suffix on the end.
Formally, a version number looks like:

.. productionlist::
    version number: <Major>.<minor>[.<patch>[.<semantic>]][-[x-]<suffix>]

With each new released version of the code, exactly one of the four numbers will
increase, and any numbers to its right will reset to 0.

The easiest way to understand version numbers is from the perspective of someone who has
written *client code*: i.e., code that makes use of a particular version of the
library. From this perspective, the version number indicates whether or
not your client code can be expected to work with different versions of this package.

.. _major-version:

Major Version
***************

The ``<Major>`` component is the **major version number**, and it describes *backward
compatibility*. Going to a *newer* version of the package, your code should continue to work
as long as the major version doesn't change.

The major version is changed only when something is removed from the public
interface. For instance, if a function is no longer supported, the major version number
would have to increase, because client code which relied on that function would no longer
work.

The major version number can be accessed through the `MAJOR` member of this module.

.. _minor-version:

Minor Version
***************

The ``<minor>`` component is the **minor version number**, and it describes *forward
compatibility*: Going to an *older* version of the package, your code will continue to work
as long as the minor version doesn't change. (As before, your code will also work
for *newer* versions, as long as the major version number hasn't changed).

The minor version number is changed only when something is added to the public
interface, for instance a new function is added. Such a change maintains *backward*
compatibility (as described above), but *loses forward compatibility*, because any client
code written again this new version may not work with an older version.

The minor version number can be accessed through the `MINOR` member of this module.

.. _patch-version:

Patch Version
***************

The ``<patch>`` component is the **patch number**, and it describes changes that
*do not affect compatibility*, either forwards or backwards. Your client code will
continue to work with an older or newer version of the package as long as the major and minor
version numbers are the same, regardless of the patch number.

Patch changes are code changes that do not effect the interface, for instance bug-fixes
or performance enhancements. (although some bugs effect the interface and may therefore
cause a higher version number to change).

The patch number can be accessed through the `PATCH` member of this module.


.. _semantic-version:

Semantic Version
*******************

The ``<semantic>`` component is the **semantic version number**, and it describes changes
that do not affect how the code runs at all. Ths generally means that documentation or
other auxilliary files included in the package have changed.

The semantic version number can be accessed through the `SEMANTIC` member of this module.


Compatibility Summary
**********************

The following table summarizes compatibility for a hypothetical client application
built against released version ``M.n.p.s``:

===========     =================== ======================
Component       Compatibile (all)   Incompatible (any)
===========     =================== ======================
Major           M                   != M
minor           >= n                < n
patch           any                 
semantic        any                 
===========     =================== ======================



Version Suffix
********************

The ``<suffic>`` component is the **version suffix**, which is used only for non-released
code. The suffix has one of the following forms:

.. productionlist::
    version suffix  :   << empty >>
                    :   dev[-<rev>]
                    :   blood-<branch>[-<rev>]

The first form is an empty suffix, and is reserved for released (tagged) code only.

The second form, `"dev"`, is for non-released code in the *trunk*. This is the
main line of development. Dev code may not be completely functional, and may even
break the existing interface.

The third form, `"blood-..."`, if for non-released code on a *branch*. The `<branch>`
component of this form should be the name of the branch. This is considered
*bleeding-edge* code and may be highly unstable.

The optional ``<rev>`` component on both the second and third forms can be used to
specify a specific revision for comitted development code. This must be an globally
unambiguous identifier for the revision, for instance the change set id.

Development code
*********************

A non-empty version suffix indicates a *development version* of the code. In this case, 
the four version numbers remain *unchanged* until the code is released (in which case
it is no longer development code, and the suffix is changed to empty).

In other words, anytime you see a non-empty version suffix, the version numbers shown
refer to version from which the development code is derived. This is done because it
is not generally known until release what the next released version number will
be, since it is not known what types of changes will be included in it.


Specifying a version number
******************************

When specifying a version number, the major and minor version numbers should always
be included. Additionally, all non-zero version numbers should be included, and
any version number to the left of a non-zero version number should be included.

The suffix should always be included in the version number, with the indicated hyphen
separating the semantic version number and the suffix. The only exception is for
released code, in which case the suffix is empty and should be omitted, along with the
joining hyphen.

The optional ``"x-"`` shown preceding the suffix in the version number is for compatibility
with setup-tools so that versions compare correctly.

The above rules will unambiguously describe any released version of the package.

Interface Version
******************************

Because any change to the public interface requires a change to either the major or minor
version numbers, the interface can be specified by a shortened two part version:

.. productionlist::
    interface version   :   <Major>.<minor>

Note that this only applies for released versions: development versions may modify the
public interface prior to changing the version numbers.
    

Release Number
~~~~~~~~~~~~~~~~~~~~~

The release number is a simple integer which increments by one for every public release
of the code. It does not convey any information about compatibility with other versions,
but it does provide a simple alternative to identifying released versions.

The release number should be written with a leading ``"r"`` or ``"rel"``. For
instance, the first release was ``"r1"``.

For release code, the release number may be used in place of the suffix in the version
number. This is optional because the version number and the release number are
synonymous. However, including them both in the version string is a useful way to
provide both pieces of information.

This alternative form of the version number is:

.. productionlist::
 alt. version number : <Major>.<minor>[.<patch>[.<semantic>]]-r<release>

Module Contents

"""

RELEASE = 1
"""
The current `Release Number`_.
"""

MAJOR = 1
"""
The current :ref:`major version number <major-version>`.
"""

MINOR = 0
"""
The current :ref:`minor version number <minor-version>`.
"""

PATCH = 0
"""
The current :ref:`patch version number <patch-version>`.
"""

SEMANTIC = 0
"""
The current :ref:`semantic version number <semantic-version>`.
"""

SUFFIX = "dev"
#SUFFIX = None
"""
The current `Version Suffix`_.

Suffix options are `None`, ``"dev"``, and ``"blood-"``

 * `None` means this is a released/tagged version.
 * ``"dev"`` means this is a development version from the trunk/mainline.
 * ``"blood-"`` means it's on a branch. After the dash, fill in the name of the branch.

Dev and blood versions are still numbered for the *previous* version,
because we may not know what the next version will be until we're finished.
"""

COPYRIGHT = 2014
"""
The copyright year for the code.
"""

YEAR = 2014
"""
The year in which the code was released.

.. seealso ::
 * `MONTH`
 * `DAY`
 * `datestr`

"""

MONTH = 5
"""
The month in which the code was released. This is 1 indexed, in [1, 12].

.. seealso ::
 * `YEAR`
 * `DAY`
 * `datestr`
 * `MONTH_NAMES`

"""

DAY = 18
"""
The day of the month on which the code was released.

.. seealso ::
 * `YEAR`
 * `MONTH`
 * `datestr`

"""

MONTH_NAMES = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
"""
A sequence giving the names of months, for use by `datestr`. Standard values are three-letter
English-language abbreviations for the months of the Gregorian calendar.
"""

assert((MONTH > 0) and (MONTH <= len(MONTH_NAMES)))

[docs]def setuptools_string():
 """
 Returns the version string used by `setuptools`. This takes one of two forms:

 .. productionlist::
 setuptools_string : <Major>.<minor>.<patch>.<semantic>-x-<suffix>
 : <Major>.<minor>.<patch>.<semantic>-r<release>

 The first form is used for development code (i.e., when `SUFFIX` is not `None`),
 and the second it used for released code.

 This is similar to `string`, except for the additional ``x-`` for development
 versions, which is used to ensure that `setuptools` sorts versions correctly.
 (specifically, so that released versions are earler than development versions
 which are derived from them).
 """

 vstr = "%d.%d.%d.%d" % (MAJOR, MINOR, PATCH, SEMANTIC)
 if SUFFIX is not None:
 vstr += "-x-%s" % SUFFIX
 else:
 vstr += "-r%d" % RELEASE
 return vstr

[docs]def tag_name():
 """
 Returns the tag name for the most recent release.
 """
 return "r%d-v%d.%d.%d.%d" % (RELEASE, MAJOR, MINOR, PATCH, SEMANTIC)

[docs]def short_string():
 """
 Returns a string describing the `Interface Version`_ (i.e., ``<Major>.<minor>``).
 """
 return "%d.%d" % (MAJOR, MINOR)

[docs]def string():
 """
 Like `setuptools_string`, except leaves out the ``x-`` for development
 versions.
 """
 vstr = "%d.%d.%d.%d" % (MAJOR, MINOR, PATCH, SEMANTIC)
 if SUFFIX is not None:
 vstr += "-%s" % SUFFIX
 else:
 vstr += "-r%d" % RELEASE
 return vstr

[docs]def datestr():
 """
 Returns a simple string giving the date of release. Format
 of this string is unspecified, it intended to be human readable,
 not machine parsed. For machine processing, use the individual
 variables, as listed below.

 .. seealso ::
 * `YEAR`
 * `MONTH`
 * `DAY`
 * `MONTH_NAMES`

 """
 assert((MONTH > 0) and (MONTH <= len(MONTH_NAMES)))
 return "%d %s %02d" % (YEAR, MONTH_NAMES[MONTH-1], DAY)

 © Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

_static/plus.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pychangelog 1.0 (v1.0.0.0-x-dev) documentation »

 All modules for which code is available

		pychangelog

		pychangelog.tests

		pychangelog.version

 © Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

_modules/pychangelog/tests.html

 Navigation

 		
 index

 		
 modules |

 		pychangelog 1.0 (v1.0.0.0-x-dev) documentation »

 		Module code »

 		pychangelog »

 Source code for pychangelog.tests

#! /usr/bin/env python
vim: set fileencoding=utf-8:
"""
The ``pychangelog.tests`` module provides some helper functions and classes for
testing your changelog, as well as standard ``version`` modules.

A standard version module is simply a module which you distribute as part of your
package (usually called ``package_name.version``) which includes as public members
a certain set of standard attributes providing information about the version number
of the package. Specifically, it provides the following attributes, which you
can read more about in *this* package's `~pychangelog.version` module:
 * `~pychangelog.version.RELEASE`
 * `~pychangelog.version.MAJOR`
 * `~pychangelog.version.MINOR`
 * `~pychangelog.version.PATCH`
 * `~pychangelog.version.SEMANTIC`
 * `~pychangelog.version.SUFFIX`
 * `~pychangelog.version.YEAR`
 * `~pychangelog.version.MONTH`
 * `~pychangelog.version.DAY`

Nosetests

Some of the code in this module is intended to work with the nose_ test utility
for python. While none of it strictly depends on nose to function, the ``node``
python package will be imported and used to provide some additional convenience
if it is available.
"""

try:
 from nose.plugins.attrib import attr
except ImportError:
 def attr(*args, **kwargs):
 def wrapper(func):
 return func
 return wrapper

import pychangelog
import unittest

__all__ = []

def public(obj):
 __all__.append(obj.__name__)
 return obj

def raise_(err, *msg):
 if len(msg):
 err = str(msg[0]) + ' ' + err
 raise AssertionError(err)

def ok_(test, *msg):
 if test:
 pass
 else:
 raise_("%r does not evaluate as true." % (test,), *msg)

def none_(test, *msg):
 if test is None:
 pass
 else:
 raise_("%r is not None." % (test,), *msg)

def eq_(a, b, *msg):
 if a == b:
 pass
 else:
 raise_('%r != %r' % (a, b,), *msg)

@public
[docs]def verify_version_module(changelog, version):
 """
 Generically tests the contents of a standard ``version`` module against the contents of
 the given `~pychangelog.ChangeLog` object, without any pre-existing assumptions about
 whether or not this is for a release or a development version.

 The latest full release (i.e., not a pre-release) in the changelog should correspond to
 the version and date information in the version module. If there is not full release in
 the change log, then the version module should list major version 0 and release 0.

 Additionally, if the change-log has no pre-release, then we should not be in development
 mode, meaning version.SUFFIX should be None. Otherwise, it should *not* be None.
 """

 last_release = changelog.get_last_release()

 #Contents of the version module should always match the latest full-release in the changelog.
 if last_release is not None:
 eq_(last_release.release_num, version.RELEASE, "Release number is incorrect. Expected latest release in change log to match version.RELEASE.")
 eq_(last_release.version[0], version.MAJOR, "Major version number is incorrect. Expected latest release in change log to match version.MAJOR.")
 eq_(last_release.version[1], version.MINOR, "Minor version number is incorrect. Expected latest release in change log to match version.MINOR.")

 test_version = last_release.version[2] if (len(last_release.version) > 2) else 0
 eq_(test_version, version.PATCH, "Patch version number is incorrect. Expected latest release in change log to match version.PATCH.")

 test_version = last_release.version[3] if (len(last_release.version) > 3) else 0
 eq_(test_version, version.SEMANTIC, "Semantic version number is incorrect. Expected latest release in change log to match version.SEMANTIC.")

 eq_(last_release.year, version.YEAR, "Year is incorrect. Expected latest release in change log to match version.YEAR.")
 eq_(last_release.month, version.MONTH, "Month is incorrect. Expected latest release in change log to match version.MONTH.")
 eq_(last_release.day, version.DAY, "Day is incorrect. Expected latest release in change log to match version.DAY.")

 else:
 #If there's no release in the changelog, then the version module should be at major version 0.

 eq_(version.RELEASE, 0, "No releases in changelog, version.RELEASE should be 0.")
 eq_(version.MAJOR, 0, "No releases in changelog, version.MAJOR should be 0.")

 if changelog.last_release() == len(changelog) - 1:
 #The latest entry in the change log is a full release, so we should not have suffix
 none_(version.SUFFIX, "Change log has release ready, version.SUFFIX should be None.")

 else:
 #The latest entry in the change log if a pre-release, so we should have a development suffix.

 ok_(version.SUFFIX is not None, "Change log has pre-release, version.SUFFIX should not be None.")

@public
[docs]def verify_for_release(changelog, version):
 """
 Tests a version module and change log for a release version. This calls `verify_version_module` to do
 the generic tests validating the version module against the changelog, and also tests that the version
 module and changelog are both correct for a release version.
 """
 none_(version.SUFFIX, "version.SUFFIX should be None for a release version.")
 eq_(changelog.last_release(), len(changelog)-1, "Changelog should not have a pre-release listing for a release version.")
 verify_version_module(changelog, version)

@public
[docs]def verify_for_development(changelog, version):
 """
 Tests a version module and change log for a release version. This calls `verify_version_module` to do
 the generic tests validating the version module against the changelog, and also tests that the version
 module and changelog are both correct for a release version.
 """
 ok_(version.SUFFIX is not None, "version.SUFFIX should not be None for a development version.")
 ok_(changelog.last_release() != len(changelog)-1, "Changelog should have a pre-release listing for a development version.")
 verify_version_module(changelog, version)

@public
[docs]class StandardVersionTests(unittest.TestCase):
 """
 This is a simple `~python:unittest.TestCase` class that can be easily extended
 for unittesting to validate your changelog and version module. All you need to
 do is subclass this class and set the `version_mod` attribute to the module
 which contains your project's standard version attributes.

 Alternatively, you can use the `create` factory method to create automatically
 create a new subclass with the specified version module.

 .. seealso::
 * `get_path_to_changelog` can be overridden to change the path from which
 the changelog will be read.
 * `get_changelog` can be overridden to change the way in which the changelog
 is actually loaded and parsed.
 * `get_version_module` can be overridden to change the way the version module
 is fetched, instead of just getting it form the `version_mod` attribute.
 """

 @classmethod
[docs] def create(cls, version_mod):
 """
 Create and return a new subclass of `cls` which sets the `version_mod`
 attribute to the given version module. This is an alternative to statically
 subclassing if for some reason that's easier for you.
 """
 return type('StandardVersionTests_', (cls,), dict(version_mod = version_mod))

 version_mod = None
 """
 The `version_mod` attribute should be set on a subclass of `StandardVersionTests`
 to the module which implememnts your package's standard version attributes.

 .. seealso::
 `get_version_module`
 """

[docs] def get_path_to_changelog(self):
 """
 Returns the filesystem path from which the changelog will be read by
 `get_changelog`.
 """
 return 'CHANGES.txt'

[docs] def get_changelog(self):
 """
 Called from `setUp` to get a `~pychangelog.ChangeLog` object to test with.
 The default implementation opens the path indicates by `get_path_to_changelog`
 and parses it using `~pychangelog.parse_plain_text`.
 """
 with open(self.get_path_to_changelog(), 'r') as change_log_file:
 return pychangelog.parse_plain_text(change_log_file)

[docs] def get_version_module(self):
 """
 Should returns a module which implements your projects standard version
 attributes. The default implementation returns the value of the `version_mod`
 attribute, which subclasses can easily set statically in the class definition.

 If this attribute value is ``None``, will raise a `NotImplementedError`.
 This is what will happen if you actually try to run an instance of this
 class directly, instead of subclassing it to override the value of the
 version_mod attribute.
 """
 if self.version_mod is None:
 raise NotImplementedError('The version_mod attribute must be set in order to run the tests.')
 return self.version_mod

[docs] def setUp(self):
 """
 Test setup sets a ``change_log`` attribute on the instance to the value returned
 by `get_changelog`.
 """
 self.change_log = self.get_changelog()

[docs] def test_changelog(self):
 """
 Just does the `setUp` to make sure that the changelog can be parsed and
 constructed.
 """
 pass

[docs] def test_version_module(self):
 """
 Invokes `verify_version_module`.
 """
 verify_version_module(self.change_log, self.get_version_module())

 @attr('release')
[docs] def test_for_release(self):
 """
 Invokes `verify_for_release`.

 If nose_ is installed, this is tagged
 with the attribute ``release`` using the `~nose:nose.plugins.attrib`
 plugin. To omit this test, you can invoke :program:`nosetests` using the
 :std:option:`--attr` parameter, for instance in BASH as:

 .. code-block:: bash

 $ nosetest --attr '!release'

 or in DOS as:

 .. code-block:: dos

 > nosetests --attr !release

 """
 verify_for_release(self.change_log, self.get_version_module())

 @attr('dev')
[docs] def test_for_dev(self):
 """
 Invokes `verify_for_development`.

 If nose_ is installed, this is tagged
 with the attribute ``dev`` using the `~nose:nose.plugins.attrib`
 plugin. To omit this test, you can invoke :program:`nosetests` using the
 :std:option:`--attr` parameter, for instance in BASH as:

 .. code-block:: bash

 $ nosetest --attr '!dev'

 or in DOS as:

 .. code-block:: dos

 > nosetests --attr !dev

 """
 verify_for_development(self.change_log, self.get_version_module())

 © Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/down.png

_modules/pychangelog.html

 Navigation

 		
 index

 		
 modules |

 		pychangelog 1.0 (v1.0.0.0-x-dev) documentation »

 		Module code »

 Source code for pychangelog

#! /usr/bin/env python
vim: set fileencoding=utf-8:

"""
The toplevel module for the pychangelog package.
"""

from docit import *
import re
import collections
import types
import datetime
import threading
import abc

#Rel 3 - v1.0.0.2 - 2014-05-18
release_header_re = re.compile(r'^rel\s+(?P<rel>[0-9]+)\s+(?:-\s+)?v(?P<vers>[\.0-9]+)\s+(?:-\s+)(?P<year>[0-9]{4})-(?P<month>[0-9]{1,2})-(?P<day>[0-9]{1,2})\s*$', re.I)
prerelease_header_re = re.compile(r'^pre[-]?rel(?:ease)?\s+(?P<rel>[0-9]+)(?:\s*$|\s+(?:-\s+)?v(?P<vers>[\.0-9]+)\s+(?:-\s+)(?P<year>[0-9]{4})-(?P<month>[0-9]{1,2})-(?P<day>[0-9]{1,2})\s*$)', re.I)

[docs]class ChangeLog(collections.Sequence):
 """
 A ``ChangeLog`` object is simply a sequence of `ReleaseInfo` objects, in order form oldest to newest.
 There are rules used to validate the change log, for instance that each release must be numerically
 next after the previous, version numbers must increase correctly, full-releases cannot follow pre-releases,
 and dates must increase correctly.
 """
[docs] def __init__(self, *releases):
 """
 Pass in the `ReleaseInfo` objects from oldest to newest.
 """
 self.__releases = []
 self.__last_release = None
 self.__lock = threading.Lock()
 for rel in releases:
 self.append(rel)

[docs] def last_release(self):
 """
 Returns the **index** in the sequence of the last **full** release (i.e.,
 not a `~ReleaseInfo.pre_release`).

 Returns ``None`` if no full releases are mentioned in the change log.

 .. seealso::
 `get_last_release` to get the actul corresponding `ReleaseInfo` object.
 """
 return self.__last_release

[docs] def get_last_release(self):
 """
 Returns the `ReleaseIngo` object for the last **full** release in the log
 (i.e., not a `~ReleaseInfo.pre_release`).

 Returns ``None`` if no full releases are mentioned in the change log.

 .. seealso::
 `last_release` to get just the index of the last release.
 """
 if self.__last_release is None:
 return None
 return self.__releases[self.__last_release]

 @docit
[docs] def __len__(self):
 """
 Returns the number of releases in the change log.
 """
 return len(self.__releases)

 @docit
[docs] def __getitem__(self, idx):
 """
 Get the `ReleaseInfo` object at the specified index, where 0 is the oldest.
 """
 return self.__releases[idx]

[docs] def append(self, release):
 """
 Add a new `ReleaseInfo` object to the end (top) of the change log. This should be
 a release after the most recent.
 """
 if len(self.__releases):
 last = self.__releases[-1]
 if release.release_num != last.release_num + 1:
 raise ValueError("Releases are out of order. Expected %d next, found %d." % (last.release_num + 1, release.release_num))

 if last.pre_release and not release.pre_release:
 raise ValueError("Release %d cannot follow pre-release %d." % (release.release_num, last.release_num))

 if last.date is None and release.date is None:
 if release.date < last.date:
 raise ValueError("Release %d cannot come before release %d." % (release.release_num, last.release_num))

 if last.version is not None and release.version is not None:
 vc_last = len(last.version)
 vc_next = len(release.version)
 vc = max(vc_last, vc_next)
 for i in xrange(vc):
 vl = last.version[i] if (i < vc_last) else 0
 vn = release.version[i] if (i < vc_next) else 0
 if vn > vl:
 break
 elif vn < vl:
 raise ValueError("Version number decreases releative to previous release: %s < %s" % (
 ".".join(str(v) for f in release.version),
 ".".join(str(v) for f in last.version),
))

 with self.__lock:
 idx = len(self.__releases)
 self.__releases.append(release)
 if not release.pre_release:
 self.__last_release = idx

[docs]class ReleaseInfo(collections.Sequence):
 """
 Encapsulates information about a single release, usually a member of a `ChangeLog`.

 A `ReleaseInfo` object acts as a `~python:collections.Sequence` over the change-lines it
 mentions in the change log (i.e., the entries that describe the changes in the release
 from the previous.

 Each such line must have a type: usually one of `TYPE_MAJOR`, `TYPE_MINOR`, `TYPE_PATCH`,
 or `TYPE_SEMANTIC`, specfiying the scope of the impact on the public interface. However,
 for the first release (release #1), each line should instead be simple a `TYPE_STAR`
 line, since there is no public interface prior to the first release.

 In addition to iterating over all the lines in the release, you can get a `~ReleaseInfo.View`
 ojbect which acts as a Sequence over just a particular type of line. One such View is created
 during initialization for each of the five types of lines, and you can get a handle to these
 View objects using the `major`, `minor`, `patch`, `semantic`, and `starred` properties.

 """

 TYPE_STAR = 0
 TYPE_MAJOR = 1
 TYPE_MINOR = 2
 TYPE_PATCH = 3
 TYPE_SEMANTIC = 4

[docs] def __init__(self, release_num, version_numbers, year, month, day, pre_release=False, *change_lines):
 def parse_int(value, name):
 if isinstance(value, int):
 return value

 try:
 return None if value is None else int(value, 10)
 except ValueError, e:
 raise ValueError("Invalid value for %s: %r" % (name, value,))

 self.__release_num = parse_int(release_num, 'release_num')
 self.__version = None if version_numbers is None else tuple(parse_int(v, 'version number') for v in version_numbers.split('.'))
 self.__year = parse_int(year, 'year')
 self.__month = parse_int(month, 'month')
 self.__day = parse_int(day, 'day')

 self.__pre_release = bool(pre_release)
 if not self.__pre_release:
 if any(x is None for x in (self.__version, self.__year, self.__month, self.__day)):
 raise ValueError("Release info values can only be None for pre-releases.")

 self.__date = None
 date_components = (self.__year, self.__month, self.__day)
 if all(x is not None for x in date_components):
 self.__date = datetime.date(*date_components)

 self.__majors = []
 self.__minors = []
 self.__patches = []
 self.__semantics = []
 self.__starred = []

 self.__major_view = ReleaseInfo.View(self, self.major_count, self.get_major)
 self.__minor_view = ReleaseInfo.View(self, self.minor_count, self.get_minor)
 self.__patch_view = ReleaseInfo.View(self, self.patch_count, self.get_patch)
 self.__semantic_view = ReleaseInfo.View(self, self.semantic_count, self.get_semantic)
 self.__starred_view = ReleaseInfo.View(self, self.starred_count, self.get_starred)

 self.__lock = threading.Lock()

 self.__change_lines = []
 for line in change_lines:
 self.append(line)

[docs] def __str__(self):
 s = 'r%d' % self.release_num
 if self.pre_release:
 s += '*'
 vers = self.version
 if vers is not None:
 s += '-' + '.'.join(str(v) for v in self.version)
 date = self.date
 if date is not None:
 s += ' (%s)' % date.strftime('%x')

 return s

[docs] def __repr__(self):
 return '<%s %s>' % (type(self).__name__, self.__str__(),)

[docs] class View(collections.Sequence):
[docs] def __init__(self, obj, length, getitem):
 self.__obj = obj
 self.__length = length
 self.__getitem = getitem

[docs] def __len__(self):
 return self.__length.__func__(self.__obj)

[docs] def __getitem__(self, idx):
 return self.__getitem.__func__(self.__obj, idx)

 @property
[docs] def major(self):
 return self.__major_view

 @property
[docs] def minor(self):
 return self.__minor_view

 @property
[docs] def patch(self):
 return self.__patch_view

 @property
[docs] def semantic(self):
 return self.__semantic_view

 @property
[docs] def starred(self):
 return self.__starred_view

[docs] def major_count(self):
 return len(self.__majors)

[docs] def get_major(self, idx):
 return self.__change_lines[self.__majors[idx]]

[docs] def minor_count(self):
 return len(self.__minors)

[docs] def get_minor(self, idx):
 return self.__change_lines[self.__minors[idx]]

[docs] def patch_count(self):
 return len(self.__patches)

[docs] def get_patch(self, idx):
 return self.__change_lines[self.__patches[idx]]

[docs] def semantic_count(self):
 return len(self.__semantics)

[docs] def get_semantic(self, idx):
 return self.__change_lines[self.__semantics[idx]]

[docs] def starred_count(self):
 return len(self.__starred)

[docs] def get_starred(self, idx):
 return self.__change_lines[self.__starred[idx]]

 @property
[docs] def pre_release(self):
 return self.__pre_release

 @property
 def release_num(self):
 return self.__release_num

 @property
[docs] def version(self):
 return self.__version

 @property
[docs] def year(self):
 return self.__year

 @property
[docs] def month(self):
 return self.__month

 @property
[docs] def day(self):
 return self.__day

 @property
[docs] def date(self):
 return self.__date

 @property
[docs] def release_num(self):
 return self.__release_num

[docs] def __len__(self):
 return len(self.__change_lines)

[docs] def __getitem__(self, idx):
 return self.__change_lines[idx]

[docs] def iter(self):
 return iter(self.__change_lines)

[docs] def append(self, line):
 ltype, pline = self.parse_line(line)
 if ltype == self.TYPE_STAR:
 if self.release_num != 1:
 raise ValueError("Only the first release (release #1) can have starred changeline. All others must be properly qualified.")
 seq = self.__starred

 else:
 if self.release_num == 1:
 raise ValueError("First release (release #1) should have only starred changelines.")

 if ltype == self.TYPE_MAJOR:
 seq = self.__majors
 elif ltype == self.TYPE_MINOR:
 seq = self.__minors
 elif ltype == self.TYPE_PATCH:
 seq = self.__patches
 elif ltype == self.TYPE_SEMANTIC:
 seq = self.__semantics
 else:
 raise Exception("Unhandled line type: %r" % (ltype,))

 with self.__lock:
 idx = len(self.__change_lines)
 self.__change_lines.append(line)
 seq.append(idx)

 @classmethod
[docs] def parse_line(cls, line):
 if not isinstance(line, types.StringTypes):
 raise TypeError("Lines must be string types: %r" % line)

 if line.startswith('*'):
 line = line[1:].lstrip()
 return cls.TYPE_STAR, line

 if line.startswith('['):
 line = line[1:].lstrip()
 ltype = None
 if line[0] == 'M':
 ltype = cls.TYPE_MAJOR
 elif line[0] == 'n':
 ltype = cls.TYPE_MINOR
 elif line[0] == 'p':
 ltype = cls.TYPE_PATCH
 elif line[0] == 's':
 ltype = cls.TYPE_SEMANTIC
 elif line[0] == '*':
 ltype = cls.TYPE_STAR

 if ltype is not None:
 line = line[1:].lstrip()
 if line.startswith(']'):
 line = line[1:].lstrip()
 return ltype, line

 raise SyntaxError("No qualifying bullet at start of change line: %r" % line)

[docs]def parse_plain_text(istream):
 """
 Parses a change log in plain-text format, with newst release at the beginning,
 and returns a `ChangeLog` object.
 """
 releases = []
 state = 0
 change_line = None
 indent_1 = None
 indent_2 = None
 linenum = 0
 for line in istream:
 linenum += 1
 if state == 0:
 if len(line):
 if not line[0].isspace():
 mobj = release_header_re.match(line)
 if mobj is not None:
 release_info = ReleaseInfo(
 release_num = mobj.group('rel'),
 version_numbers = mobj.group('vers'),
 year = mobj.group('year'),
 month = mobj.group('month'),
 day = mobj.group('day'),
)

 change_line = None
 indent_1 = None
 indent_2 = None
 state = 1

 else:
 mobj = prerelease_header_re.match(line)
 if mobj is not None:
 release_info = ReleaseInfo(
 release_num = mobj.group('rel'),
 version_numbers = mobj.group('vers'),
 year = mobj.group('year'),
 month = mobj.group('month'),
 day = mobj.group('day'),
 pre_release = True,
)

 change_line = None
 indent_1 = None
 indent_2 = None
 state = 1

 else:
 raise SyntaxError("Invalid release header on line %d: %r" % (linenum, line))

 elif len(line.strip()):
 raise SyntaxError("Invalid syntax on line %d. Expected a release header line: %r" % (linenum, line))

 elif state == 1:
 oline = line
 line = line.strip()
 if len(line) == 0:
 if change_line is not None:
 release_info.append(change_line)
 change_line = None
 releases.append(release_info)
 release_info = None
 change_lines = []
 state = 0

 else:
 indent_length = len(oline) - len(line)
 indent = oline[:indent_length-1]
 if indent_1 is None:
 #First line
 indent_1 = indent
 change_line = line

 elif indent == indent_1:
 #Next line.
 release_info.append(change_line)
 change_line = line

 else:
 #Not the first-level indent.
 if indent_2 is None:
 #This should be the second level indent.
 if not indent.startswith(indent_1):
 raise SyntaxError("Invalid indent on line %d. Expected a second level indent beyond the first level indent." % (linenum,))

 indent_2 = indent
 change_line += line

 elif indent == indent_2:
 #Line continued
 change_line += line

 else:
 #Invalid indent
 raise SyntaxError("Invalid indent on line %d. Expected a first or second level indent." % (linenum,))

 if state == 1:
 if change_line is not None:
 release_info.append(change_line)
 change_line = None
 releases.append(release_info)
 release_info = None
 state = 0

 return ChangeLog(*reversed(releases))

 © Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pychangelog 1.0 (v1.0.0.0-x-dev) documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Brian Mearns.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/up-pressed.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

